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Kosterlitz-Thouless transitions on a fluctuating surface of genus zero
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We investigate the Kosterlitz-Thouless transition for hexatic order on a fluctuating spherical surface of genus
zero and derive a Coulomb gas Hamiltonian to describe it. In the Coulomb gas Hamiltonian, charge densities
arise from disclinations and from Gaussian curvature. There is an interaction coupling the difference between
these two densities, whose strength is determined by the hexatic rigidity. We then convert it into the sine-
Gordon Hamiltonian and find a linear coupling between a scalar field and the Gaussian curvature. After
integrating over the shape fluctuations, we obtain the massive sine-Gordon Hamiltonian, which corresponds to
a neutral Yukawa gas, and the interaction between the disclinations is screened. We fikg/ ter 1/4,
whereK, and « are hexatic and bending rigidity, respectively, that the transition is suppressed altogether,
much as the Kosterlitz-Thouless transition is suppressed in an infinite two-dimensional superconductor. If, on
the other handK ,/k<1/4, there can be an effective transiti$81063-651X96)09211-3

PACS numbg(s): 05.70.Jk, 68.16-m, 87.22.Bt

Recently, the Kosterlitz-Thoules¢KT) transition for with R=1. Later, when we analyze the interaction between
hexatic order on a free fluctuating membrane has been inveswno disclinations, we will recover this length scale. Associ-
tigated[1]. A flat rigid membrane can have quasi-long-rangeated with R({)) is a metric tensor g,z(Q)
(QLR) hexatic order(2] at low temperature and undergo a =4,R(2)-3,R(2) and a curvature tensét,({2) defined
KT disclination unbinding transitioh3-5] to a disordered via K,z(Q)=N(Q)-d,dzR(Q), whereN(Q) is the local
high-temperature phase. A fluctuating membrane can alsgnit normal to the surface. From the curvature terisgg,
have QLR hexatic orddi6] at low temperature. At high tem- the mean curvaturkl and the Gaussian curvatukeare de-
perature, a fluctuating membrane has no internal order anghed as
can be charaterized by a bending rigidity At length scales
smaller than the persistence lendth= ae*™ 3T wherea is 1
a molecular size and is the temperature, the membrane H= _gaBKBa, K=deg“Kw, 2
looks flat; at longer length scales, it is crumpled. However, at 2
low temperature, hexatic order stiffens the bending rigidity
so that the bending rigidity approaches a constant times thghere g*# is the inverse tensor ofg,s satisfying
hexatic rigidityK 5 [7]. Thus the hexatic membrane is more ahgw: By
rigid than a fluid membrane and it is said to be crinkled  To describe hexatic order, we construct the tangent vec-
rather than crumpled. A fluctuating hexatic membrane cafgyg
undergo a KT transition from the crinkled hexatic to the
crumpled fluid state. For fixed large there is a disclination
melting to the crumpled fluid phase as temperature is in-
creased, and at fixdd, , there is a transition to the crumpled
fluid phase asc is decreased. whered,= d/du® andu= (6, ¢), and introduce orthonormal

In this paper, we extend a study of the KT transitions to aunit vectorse; and e, at each point on the surface. Then
fluctuating surface of genus zero. Ovrut and Thomas dise, () -t,(2)=co(2) defines a local bond angle ().
cussed the structure of the KT transition of a vortex-Hexatic order is then described by the local bond order pa-
monopole Coulomb gas on a rigid sphere and show that it isameterm({) = coge, + sin@e,, where ® (Q) has sixfold
the same as in the planar case, i.e., the KT transition temsymmetry. Note that sinc®({)) depends on the choice of
perature on a rigid sphere is the same as that on the Eucligrthonormal vectore, and e,, any spatial derivatives for

KT _ KT _ H : . . .
ean planeT gppere= Tpane= TKA/2 [8]. We investigate the ef-  m must be covariant derivatives.
fect of thermal shape fluctuations of a genus zero surface on In the continuum elastic theory, it is now well established
the KT transition in the limitBx>1. In this limit, we can that the long-wavelength properties of a fluctuating mem-
parametrize the surface by its radius vector as a function dfrane are described by the Helfrich-Canham Hamiltonian

t():(}](;R, t¢:(9¢R, (3)

standard polar coordinates= (6, $)=(}, Huc [9] and the hexatic free energy, [6]. The Helfrich-
Canham Hamiltonian can be expressed as a sum of three
R(Q)=R[1+p(Q)]e, (1) terms

wheree, is the radial unit vector and({}) measures devia-
tion from sphericity with radiuk. This parametrization is a
“normal gauge.” To make the equations simple, we map
this parametrization onto the unit sphere parametrizatiohe first term is the mean curvature energy

HHC:HK+HG+H0- (4)
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1 to the Gaussian curvatute of the surface. In facth, is
HKZEKJ d?uyg(2H - 2Hg)? related toK. The curl of the gauge field, is the Gaussian
curvature

1 2 2 3 ap _
_EKJ dQ[(V+2)p]°+0O(p°), ) Y*"DoAs=K, (11

. . wherey*# is the antisymmetric tensor defined via
where g=deq,;, 2H=Kj is twice the mean curvature, Y y

H, is the spontaneous mean curvature, which is equal to =N-(t,Xt5)=1/ge aB_qea' gBB ~, (12)

for the sphere, and the second form is valid for the normaljy“ﬂ (tXte)=VGeap, Y=g 07 Yargr

gauge. The second term is the Gaussian curvature energy In terms of the local bond angl®((Q), the covariant
derivative ofm writes

1
— 2
He=3 e f d’uygK, ©®  D,m=(D,my)e,+my(D,e)=(DMy) e~ MeA,&ar8

where K =deK§ is the Gaussian curvature. This term is a =(D,0)(—sinOe,+codey) —Ay(code,—sinde,)
topological invariant depending only on the genus of the =(D,0—-A,)m,, (13
surfaces due to the Gauss-Bonnet theorem

where m, = —sin@e; + coPe,, satisfyingm-m, =0. Then

f d2uygK=4m(1- ) =27y, 7) the hexatic energy writes
1

where 7 is the number of handles ang=2(1- 7) is the HAZEKAJ d?ugg (3,0 —A) (350 —Ag). (14)
Euler characteristic. Since we will consider surfaces of fixed

genus, we will drop this term. Finally, Thus we have the Hamiltonigi=H .+ H, to describe fluc-

tuating hexatic membranes.
_ 2 To gain some physical understanding of a spherical
Ho UJ d?uilg ® hexatic membrane, we examine the ground states. Since we

.are interested in the limiBx>1 and in this limit, domi-

is the surface tension energy. We are mostly interested ifates, we first minimizé, over the shape fluctuation field
free membranes for which the renormalized surface tensmg which givesp(Q)=0, and then we minimizé<, over

obtained by differentiating the total free energywith re- g \ith p(Q)=0 and find
spect to the total surface arga(or=dF/d.A) is zero. Since

there are entropic contributions toz as well as contribu- SHY
tions from the internal order, the value of the bare surface 560(Q)
tensiono will have to be adjusted to keepg zero. In what
follows, we will ignore’H,, with the understanding that it is
really present if we want to keep track of hawg actually
becomes zero.

1
——=g%%(9,0°—A)=0, (15

o-00 Vg’

where the superscript 0 stands for the rigid sphere with
p(Q)=0. In Ref.[10], Lubensky and Prost show that in the
The hexatic free energy is the contribution to the energ round state 12 disclinations of strength/8 are arranged at
. ) - <the vertices of icosahedron inscribed in the sphere. A discli-
from fluctuations in the local bond order parameter. Since

the hexatic order parameten has a fixed magnitude and ?r?;ﬁ?ost(l:;“%it;vglosst;?;?;?r?i gives rise to a singular con-
there are no external fields aligning along a particular 0 9
direction, the lowest nontrivial contribution to the energy

associated withm arises from its gradients, ﬁdu“ 3,05M=q, (16)
1 . . .
HAZEKAJ d2u @gaﬁDam. Dgm, (9) where I' is a contour enclosingy;. Thus, in general,
9,0°=0,0,+0v°%, where® is nonsingularp®=3,05",
and

whereD , is a covariant derivative since the bond order pa-

rameter is frustrated by the rotation of tangent vectors that V) v°=n°(Q) (17)

occurs under parallel transport on a curved surface. The B '

amount of frustration is given by the gauge fiéld, i.e., the  \here

covariant derivative ok, in direction « defines the gauge

field A, . Under parallel transport in directiatu®, eache, is a2

rotated by an anglé du®. Thus the gauge field, is de- n%(Q)= ?21 o(Q—Q;), (19
=

fined by

__ which is the disclination density in the ground state and
Dt Aabarf (19 Q);’s are the coordinates of the vertices of icosahedron. Since
where e, is the antisymmetric tensor with;;= —e,,=1  9,0°—A) satisfiesD*(9,0°~A%) =0, itis divergence-free
andA e, is called the spin connection and describes howand purely transverse. AccordingiMG)O—Ag can be written

the basis vectoe, rotates under parallel transport accordingin terms of the curl of scalar fields and by applying the op-
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eratory?*D 4 to 9,0°— A% we find these scalar fields to be
related to the Gaussian curvatufg of the rigid sphere and
the ground-state disclination density on the rigid sphere,

YD p(9,0°—A%) = ¥#*D g — y*D pAG=n— Ko(,lg)

where K, is a Gaussian curvature of the rigid sphere an
n is the disclination density in the ground state.

Now taking into account the bond angle fluctuations

around®? and the shape fluctuations around the sphere,

0=0°+0, A,=A’+sA,, (20)

the full Hamiltonian writesH="Hy+ 6H,

1
H0=EKAJ dQ(9#0°—A%)(9,0°-A)),

1 1 ~
SH Efcf dQ[(V2+2)p]2+§KAJ dQ (990 — 5A%)

X(39,0—8A,)+0(p%). (22)

The angle fluctuation fiel@)(ﬂ) can also have disclinations
of strengthq=2(k/6), wherek is an integer, due to the

thermal fluctuatior{11]. Thusd,® can be decomposed into
singular and nonsingular parts®=4,0!+v,, where®!
is nonsingulary ,= 4,0°"9, and

YD wp=n(Q), n(Q)=2 qdQ—-Q), (22

where n(Q}) is the thermally excited disclination density
with disclinations of strengthy; at ();. The vectorv, can
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It costs energy.(k) to create the core of a disclination of
strengthk. (We assume, for the moment, that the core ener-
gies of the positive and negative disclinations are the same.
See, however, Reffl,12], [13].) Thus partition sums should
be weighted by a factoy,=e#<k for each disclination of
strengthk. Since e.(k)~k?, we may, at low temperature,
restrict our attention to configurations in which only configu-

dations of strength+1 appear. LetN.. be the number of

disclinations of strengtit 1 and letu;+ be the coordinate of
the core of the disclination with strengthl1 labeled byi.
The hexatic membrane partition function can then be written
as

Z(K,KA,y)=TrUyNJ DRJ DOl AHeg=BHITHL)
(26)

wherey=y;, andN=N,+N_. H, depends on all of the
disclination coordinate$) - wherer*=1,2,... ,N., and
Tr, is the sum over all possible disclination distribution with
the topological constrairjtl4]

J =]

wherea? is a molecular solid angle. The Kronecker factor
on, n_ In Tr, imposes the topological constraint that the
total disclination strength on a sphere is 2 since with
N,=N_ we have 12 ground-state disclinations with the
strength 1/6 giving the total disclination strength
12% (1/6)=2.
The hexatic model of Eq26) can easily be converted to

a Coulomb gas model using

dQ -
a.2 ’ (27)

5N+,N_
CNLINC!

dQ, -
aZ

Tr,= >,

NI N

11

V+

always be chosen so that it is purely transverse, i.e.,

D,v*=0. In the hexatic Hamiltoniarj,® always occurs in
the combinatiorny,®— 6A,. The spin connectiodA, can

¥*PD (v g~ 6Ag)=n—SK=C, (28)

and will, in general, have both a longitudinal and a trans-

verse component. However, one can always redefihéo
include the longitudinal part ofA, . This amounts to choos-
ing locally rotated orthonormal vectors(u) and e,(u) so
thatD,6A*=0. Thus we may take both, and 6A, to be
transverse and the hexatic Hamiltonian

1
EKAJ dQ (90 +v— 6A) (9,0 + v ,— 5A,) =H+H,
(23

can be decomposed into a regular longitudinal part

1
Hj=5Ka f dQs*els el (24)
and a transverse part
1
lezKAf dQ(v¥— A (v,— 6A,), (25)

where the cross terfidQ (v, — 5A,)9*®! is dropped since
D%(v,—A,)=0.

which follows from Egs.(11) and(22) where K is the de-
viation of the Gaussian curvature from the rigid sphere. The
guantityC=n-— 6K is a “charge” density with contributions
arising both from disclinations and from Gaussian curvature.
Equation(28) implies

1
_c

Ua™ 5Aa: - ’YaBDﬁA ’

(29

where we used vy, D*y*D,=—A and A=D°D,
=(1g)9,/gg*#a, is the Laplacian on a surface with met-
ric tensorg,z acting on a scalar. RecdlEq. (12)] that Yo"
rotates a vector byr/2 so thatv ,— 8A, is perpendicular to
DB(—A)*lc and is thus manifestly transverse. Using Eq.
(29 in Eqg. (25), we obtain

Z=Tr N f DR f pOle~Br.—FH K. (30)

where



,ya)\D)\

BD
ka | d0 o))

1
= EKAJ dQ dQ'C(Q)

¥2D zy*'D,
X —A2

c‘)‘(Q—Q’))C(Q’)

1 1
= EKAf dQ dQ’C(Q)( - K&(Q—Q’))C(Q’) (3D
is the Coulomb Hamiltonian associated with the chafge
Since the longitudinal variabl@! appears only quadratically
in H, the trace ovei®! can be done directly giving the
Liouville action[15] arising from the conformal anomaly

f DO e AH|=g= AML, (32)
where
_ 1t dQ L dQ dQ'K(Q
ﬂ”t—mf ‘Ef ()
1
X —Ké(Q—Q’))K(Q’). (33
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Z=Tr,yN J DRe ™ PH«= BFHL= BHc, (34)

The Coulomb gas model can be converted, by following
standard procedures, into a sine-Gordon model. The first step
is to carry out a Hubbard-Stratonovich transformation on

BHc,

1
e*BHc:eBHLJ pcbexp( - E(,BKA)’lJ' an“@aad))

Xex;{i]dﬂ&b ,

where the Liouville factore®™. is needed to ensure that
e A™c is one wherC=0. Inserting this in Eq(34), we ob-
tain

(39

Z:Trvny DR D@eﬁmﬁ%exp(if dQ(n—a‘K)cb),
(36)

where
1
,BHq,zi(,BKA)’lf dQ 9°®g,P. (37)

The only dependence on disclinations is now in the term

The Coulomb gas partition function can thus be written linear inn. Thus, to carry out Tr, we need only to evaluate

1 aQ Nefpdo N
N ) _ Ny +N_ R 2mid(Q)/6 TR L —2a@id(Q)/6e
Try exp{lf dQ nCID)—N;:N_ NLIN_T On, N_Y (f az © | f aZ ® |
1 do do NelrdQ N-
_ do {2 D(Q)/6] - w} ~i{27[®(Q)/6] - w}
N;N N, IN_ ljzw(ngz_e ) (y ?e )
dw 5
- [ mexs| 2y1a®) [ d0cogam(@ie)-w). 38
[
Thus
= f DP f DRe FMe™~, (41

d
=f£f D(I)f DR eBHKe'B%exp((Zy/az)

exy{—iJ’ dQ<I>5K).

(39

X J dQcog 2m(P/6)— w]

We can now change variables, settig=(6/27)(®' + w).
The term linear in the Gaussian curvature then becomes

6
—ifde‘KZ(wHI)’)——i—f dQ @' 6K, (40)

where we usedd)l sK=0. The integral ovew in Eq. (39)
is now trivial, and dropping the prime we obtain

where

(,BKA) 1( ) fdm“qna P— ﬁf dQcosb

6
—i —f dQ) ®sK (42
21

is the sine-Gordon action on a fluctuating surface of genus
zero. The first two terms of this action are the gradient and
cosine energies present on a rigid sphere. The final term
provides the principal coupling betwedn and fluctuations

in the metric. It is analogous to the dilaton couplirig] of
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string theory, though here the coupling constant is imaginaryhere P,() is the Legendre polynomial with degree

rather than real. Note that the Liouville action is not explic-
itly present in Eq.(41).

In the regimeB«x>1, we can truncate the higher-order
terms inp. In the normal gauge, the partition function be-
comes

1
Z:f DpD(DEX[{—E,BKf dQ[(V2+2)p]?
1 2y
—Eﬁrf dQ(V(D)2+¥f dQcosb

: (43

'6de(DV2 2
o (Ve+2)p

where BI'=36/472BK,, and we usedsK=(V2+2)p. To
lowest order inp, the shape fluctuation field is linearly
coupled to the scalar field, which is the conjugate field to
the disclinations. In Ref[1], we have shown that similar

coupling in the fluctuating flat membrane is quadratic in the

shape fluctuation field.

Integrating over the shape fluctuation figddgives the
effective Hamiltonian for the conjugate field to the disclina-
tions

z:f D@exp{—%BFJ' dQ[(VP)2+ u?d?]

(44)

2y
+ ?J dQcosb

with u?=K,/k. This is the massive sine-Gordon theory.
The shape fluctuations induce the mass termdfdield and
screen the Coulombic interaction between the disclination
giving the Yukawa interaction between them. This partition
function is equivalent to that of the Yukawa gas Hamiltonian
on the rigid sphere with radiug,

1 1
HYukawaZEIBKAf dQn(Q) mn(ﬂ)

1
= 5AKa2 4ig,G(Qi- ), (45)

where

21+1
G(Qi—ﬂj)Zzl mpl(comij):

} P,(—cosw;), (46)

v=—1/2+(\J1-4x?)/2 and wj; is the angle between two
disclinations at); and(}; . For O<u<1/2, the degree of the
Legendre polynomialv is real and the length scale intro-
duced byry=(u/R) ! is larger than the system sizeR2
after recovering the original length scale by mapping the unit
sphere back to the sphere with the radRisOn the other
hand, if u>1/2, v is a complex numbery=—1/2*ir,
wherer= (\4u2—1)/2 and\ 4<2R. The length scale intro-
duced byry=R/u may be interpreted as the Debye screen-
ing length arising from shape fluctuations.

The interaction energy between two disclinatiorend
at positions(); and (}; with strengthg; andq; is given by
0;q;G(d;;), whered;; =2Rsin(w;;/2) is the chordal distance
between two disclinations on the sphere with radifusThe
interactionG(d;;) has the limiting forms

- 3In(d;j/2), wp '>2, dj<2R
G(dlj)2 - %ln(d”/Z), ,UJ71<2, dij<)\d (47)
eidij /)\d, ,L,L71<2, d” >Ny -

Following the analogy of the two-dimensional Coulomb gas,
when the screening length is much larger than the system
sizeA 4> 2R, the induced mass term arising from shape fluc-
tuations is irrelavent for the KT transition and the KT tran-
sition temperature is given byf.=wKy/72 for u<1/2.
However, foru>1/2, the screening length is shorter than the
system sizé\y<<2R and the mass term is relavent for the KT
transition and changes the universality class of the system.
There is no KT transition at nonzero temperature. The dis-
clinations are always unbound at nonzero temperature and
the KT transition temperature vanishes. Thus we find the
crossover aju=1/2.

In conclusion, we present the effect of shape fluctuations
on the interaction of the disclinations on a spherical surface
with genus zero. We have confirmed that the screened inter-
action is of the same form as the vortex line interactions in
type-1l superconductors. In these superconductors, screening
of vortex line interactions drives the Kosterlitz-Thouless
transition temperature to zero for an infinite superconductor
in zero magnetic field17]. Likewise, the screening of the
disclination interaction on the fluctuating spherical surface
drives the KT transition temperature to zero for 1<2 in
which the screening length is shorter than the system size.
However, whenu~1>2, the effect of shape fluctuations is
irrelavent and the effective KT transition occurs at a finite
temperature.
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