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We investigate the Kosterlitz-Thouless transition for hexatic order on a fluctuating spherical surface of genus
zero and derive a Coulomb gas Hamiltonian to describe it. In the Coulomb gas Hamiltonian, charge densities
arise from disclinations and from Gaussian curvature. There is an interaction coupling the difference between
these two densities, whose strength is determined by the hexatic rigidity. We then convert it into the sine-
Gordon Hamiltonian and find a linear coupling between a scalar field and the Gaussian curvature. After
integrating over the shape fluctuations, we obtain the massive sine-Gordon Hamiltonian, which corresponds to
a neutral Yukawa gas, and the interaction between the disclinations is screened. We find, forKA /k@1/4,
whereKA and k are hexatic and bending rigidity, respectively, that the transition is suppressed altogether,
much as the Kosterlitz-Thouless transition is suppressed in an infinite two-dimensional superconductor. If, on
the other hand,KA /k!1/4, there can be an effective transition.@S1063-651X~96!09211-2#

PACS number~s!: 05.70.Jk, 68.10.2m, 87.22.Bt

Recently, the Kosterlitz-Thouless~KT! transition for
hexatic order on a free fluctuating membrane has been inves-
tigated@1#. A flat rigid membrane can have quasi-long-range
~QLR! hexatic order@2# at low temperature and undergo a
KT disclination unbinding transition@3–5# to a disordered
high-temperature phase. A fluctuating membrane can also
have QLR hexatic order@6# at low temperature. At high tem-
perature, a fluctuating membrane has no internal order and
can be charaterized by a bending rigidityk. At length scales
smaller than the persistence lengthjp5ae4pk/3T, wherea is
a molecular size andT is the temperature, the membrane
looks flat; at longer length scales, it is crumpled. However, at
low temperature, hexatic order stiffens the bending rigidity
so that the bending rigidity approaches a constant times the
hexatic rigidityKA @7#. Thus the hexatic membrane is more
rigid than a fluid membrane and it is said to be crinkled
rather than crumpled. A fluctuating hexatic membrane can
undergo a KT transition from the crinkled hexatic to the
crumpled fluid state. For fixed largek, there is a disclination
melting to the crumpled fluid phase as temperature is in-
creased, and at fixedKA , there is a transition to the crumpled
fluid phase ask is decreased.

In this paper, we extend a study of the KT transitions to a
fluctuating surface of genus zero. Ovrut and Thomas dis-
cussed the structure of the KT transition of a vortex-
monopole Coulomb gas on a rigid sphere and show that it is
the same as in the planar case, i.e., the KT transition tem-
perature on a rigid sphere is the same as that on the Euclid-
ean plane:Tsphere

KT 5Tplane
KT 5pKA/2 @8#. We investigate the ef-

fect of thermal shape fluctuations of a genus zero surface on
the KT transition in the limitbk@1. In this limit, we can
parametrize the surface by its radius vector as a function of
standard polar coordinatesu5(u,f)[V,

R~V!5R@11r~V!#er , ~1!

whereer is the radial unit vector andr(V) measures devia-
tion from sphericity with radiusR. This parametrization is a
‘‘normal gauge.’’ To make the equations simple, we map
this parametrization onto the unit sphere parametrization

with R51. Later, when we analyze the interaction between
two disclinations, we will recover this length scale. Associ-
ated with R(V) is a metric tensor gab(V)
5]aR(V)•]bR(V) and a curvature tensorKab(V) defined
via Kab(V)5N(V)•]a]bR(V), whereN(V) is the local
unit normal to the surface. From the curvature tensorKab ,
the mean curvatureH and the Gaussian curvatureK are de-
fined as

H5
1

2
gabKba , K5detgalKlb , ~2!

where gab is the inverse tensor ofgab satisfying
galglb5db

a

To describe hexatic order, we construct the tangent vec-
tors

tu5]uR, tf5]fR, ~3!

where]a5]/]ua andu5(u,f), and introduce orthonormal
unit vectorse1 and e2 at each point on the surface. Then
e1(V)•tu(V)5cosQ(V) defines a local bond angleQ(V).
Hexatic order is then described by the local bond order pa-
rameterm(V)5cosQe11sinQe2, whereQ(V) has sixfold
symmetry. Note that sinceQ(V) depends on the choice of
orthonormal vectorse1 and e2, any spatial derivatives for
m must be covariant derivatives.

In the continuum elastic theory, it is now well established
that the long-wavelength properties of a fluctuating mem-
brane are described by the Helfrich-Canham Hamiltonian
HHC @9# and the hexatic free energyHA @6#. The Helfrich-
Canham Hamiltonian can be expressed as a sum of three
terms

HHC5Hk1HG1Hs . ~4!

The first term is the mean curvature energy
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Hk5
1

2
kE d2uAg~2H22H0!

2

5
1

2
kE dV@~¹212!r#21O~r3!, ~5!

where g5detgab , 2H5Ka
a is twice the mean curvature,

H0 is the spontaneous mean curvature, which is equal to 1
for the sphere, and the second form is valid for the normal
gauge. The second term is the Gaussian curvature energy

HG5
1

2
kGE d2uAgK, ~6!

whereK5detKb
a is the Gaussian curvature. This term is a

topological invariant depending only on the genus of the
surfaces due to the Gauss-Bonnet theorem

E d2uAgK54p~12h!52px, ~7!

whereh is the number of handles andx52(12h) is the
Euler characteristic. Since we will consider surfaces of fixed
genus, we will drop this term. Finally,

Hs5sE d2uAg ~8!

is the surface tension energy. We are mostly interested in
free membranes for which the renormalized surface tension
obtained by differentiating the total free energyF with re-
spect to the total surface areaA (sR5]F/]A) is zero. Since
there are entropic contributions tosR as well as contribu-
tions from the internal order, the value of the bare surface
tensions will have to be adjusted to keepsR zero. In what
follows, we will ignoreHs with the understanding that it is
really present if we want to keep track of howsR actually
becomes zero.

The hexatic free energy is the contribution to the energy
from fluctuations in the local bond order parameter. Since
the hexatic order parameterm has a fixed magnitude and
there are no external fields aligningm along a particular
direction, the lowest nontrivial contribution to the energy
associated withm arises from its gradients,

HA5
1

2
KAE d2uAggabDam•Dbm, ~9!

whereDa is a covariant derivative since the bond order pa-
rameter is frustrated by the rotation of tangent vectors that
occurs under parallel transport on a curved surface. The
amount of frustration is given by the gauge fieldAa , i.e., the
covariant derivative ofea in direction a defines the gauge
fieldAa . Under parallel transport in directiondu

a, eachea is
rotated by an angleAadu

a. Thus the gauge fieldAa is de-
fined by

Daea52Aa«abeb , ~10!

where «ab is the antisymmetric tensor with«1252«2151
andAa«ab is called the spin connection and describes how
the basis vectorea rotates under parallel transport according

to the Gaussian curvatureK of the surface. In fact,Aa is
related toK. The curl of the gauge fieldAa is the Gaussian
curvature

gabDaAb5K, ~11!

wheregab is the antisymmetric tensor defined via

gab5N•~ ta3tb!5Ag«ab , gab5gaa8gbb8ga8b8, ~12!

In terms of the local bond angleQ(V), the covariant
derivative ofm writes

Dam5~Dama!ea1ma~Daea!5~Dama!ea2maAa«abeb

5~DaQ!~2sinQe11cosQe2!2Aa~cosQe22sinQe1!

5~DaQ2Aa!m' , ~13!

wherem'52sinQe11cosQe2, satisfyingm•m'50. Then
the hexatic energy writes

HA5
1

2
KAE d2uAggab~]aQ2Aa!~]bQ2Ab!. ~14!

Thus we have the HamiltonianH5Hk1HA to describe fluc-
tuating hexatic membranes.

To gain some physical understanding of a spherical
hexatic membrane, we examine the ground states. Since we
are interested in the limitbk@1 and in this limitHk domi-
nates, we first minimizeHk over the shape fluctuation field
r, which givesr(V)50, and then we minimizeHA over
Q with r(V)50 and find

dHA
0

dQ~V!
U

Q5Q0

5
1

Ag0
]bg

0ab~]aQ
02Aa

0!50, ~15!

where the superscript 0 stands for the rigid sphere with
r(V)50. In Ref.@10#, Lubensky and Prost show that in the
ground state 12 disclinations of strength 2p/6 are arranged at
the vertices of icosahedron inscribed in the sphere. A discli-
nation atu5ui with strengthqi gives rise to a singular con-
tribution Q0

sing to Q0 satisfying

R
G
dua]aQ0

sing5qi , ~16!

where G is a contour enclosingui . Thus, in general,
]aQ05]aQ081va

0 , whereQ08 is nonsingular,va
05]aQ0

sing,
and

gabDavb
05n0~V!, ~17!

where

n0~V!5
2p

6 (
i51

12

d~V2V i !, ~18!

which is the disclination density in the ground state and
V i ’s are the coordinates of the vertices of icosahedron. Since
]aQ02Aa

0 satisfiesDa(]aQ02Aa
0)50, it is divergence-free

and purely transverse. Accordingly]aQ02Aa
0 can be written

in terms of the curl of scalar fields and by applying the op-
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eratorgbaDb to ]aQ02Aa
0 we find these scalar fields to be

related to the Gaussian curvatureK0 of the rigid sphere and
the ground-state disclination density on the rigid sphere,

gbaDb~]aQ02Aa
0 !5gbaDbva

02gbaDbAa
05n02K0 ,

~19!

whereK0 is a Gaussian curvature of the rigid sphere and
n0 is the disclination density in the ground state.

Now taking into account the bond angle fluctuations
aroundQ0 and the shape fluctuations around the sphere,

Q5Q01Q̃, Aa5Aa
01dAa , ~20!

the full Hamiltonian writesH5H01dH,

H05
1

2
KAE dV~]aQ02A0a!~]aQ02Aa

0 !,

dH5
1

2
kE dV@~¹212!r#21

1

2
KAE dV~]aQ̃2dAa!

3~]aQ̃2dAa!1O~r3!. ~21!

The angle fluctuation fieldQ̃(V) can also have disclinations
of strengthq52p(k/6), wherek is an integer, due to the
thermal fluctuation@11#. Thus]aQ̃ can be decomposed into
singular and nonsingular parts]aQ̃5]aQ i1va , whereQ i

is nonsingular,va5]aQ̃sing, and

gabDavb5n~V!, n~V!5(
i
qid~V2V i !, ~22!

where n(V) is the thermally excited disclination density
with disclinations of strengthqi at V i . The vectorva can
always be chosen so that it is purely transverse, i.e.,
Dav

a50. In the hexatic Hamiltonian,]aQ̃ always occurs in
the combination]aQ̃2dAa . The spin connectiondAa can
and will, in general, have both a longitudinal and a trans-
verse component. However, one can always redefineQ i to
include the longitudinal part ofdAa . This amounts to choos-
ing locally rotated orthonormal vectorse1(u) and e2(u) so
thatDadAa50. Thus we may take bothva anddAa to be
transverse and the hexatic Hamiltonian

1

2
KAE dV~]aQ i1va2dAa!~]aQ i1va2dAa!5Hi1H'

~23!

can be decomposed into a regular longitudinal part

Hi5
1

2
KAE dV]aQ i]aQ i ~24!

and a transverse part

H'5
1

2
KAE dV~va2dAa!~va2dAa!, ~25!

where the cross term*dV(va2dAa)]
aQ i is dropped since

Da(va2Aa)50.

It costs energyec(k) to create the core of a disclination of
strengthk. ~We assume, for the moment, that the core ener-
gies of the positive and negative disclinations are the same.
See, however, Refs.@1,12#, @13#.! Thus partition sums should
be weighted by a factoryk5e2bec(k) for each disclination of
strengthk. Since ec(k);k2, we may, at low temperature,
restrict our attention to configurations in which only configu-
rations of strength61 appear. LetN6 be the number of
disclinations of strength61 and letui6 be the coordinate of
the core of the disclination with strength61 labeled byi .
The hexatic membrane partition function can then be written
as

Z~k,KA ,y!5Trvy
NE DRE DQ ie2bHke2b~Hi1H'!,

~26!

wherey5y1, andN5N11N2 . H' depends on all of the
disclination coordinatesVn6 wheren651,2, . . . ,N6 , and
Trv is the sum over all possible disclination distribution with
the topological constraint@14#

Trv5 (
N1 ,N2

dN1 ,N2

N1!N2!
)
n1

E dVn1

a2 )
n2

E dVn2

a2
, ~27!

wherea2 is a molecular solid angle. The Kronecker factor
dN1 ,N2

in Trv imposes the topological constraint that the
total disclination strength on a sphere is 2 since with
N15N2 we have 12 ground-state disclinations with the
strength 1/6 giving the total disclination strength
123(1/6)52.

The hexatic model of Eq.~26! can easily be converted to
a Coulomb gas model using

gabDa~vb2dAb!5n2dK[C, ~28!

which follows from Eqs.~11! and ~22! wheredK is the de-
viation of the Gaussian curvature from the rigid sphere. The
quantityC5n2dK is a ‘‘charge’’ density with contributions
arising both from disclinations and from Gaussian curvature.
Equation~28! implies

va2dAa52ga
bDb

1

D
C, ~29!

where we used galD
lgabDa52D and D5DaDa

5(1/Ag)]aAggab]b is the Laplacian on a surface with met-
ric tensorgab acting on a scalar. Recall@Eq. ~12!# that ga

b

rotates a vector byp/2 so thatva2dAa is perpendicular to
Db(2D)21C and is thus manifestly transverse. Using Eq.
~29! in Eq. ~25!, we obtain

Z5Trvy
NE DRE DQ ie2bHk2bHi2bHc, ~30!

where
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Hc5
1

2
KAE dV

ga
bDb

D
C~V!

galDl

D
C~V!

5
1

2
KAE dV dV8C~V!

3S ga
bDbgalDl

D2 d~V2V8! D C~V8!

5
1

2
KAE dV dV8C~V!S 2

1

D
d~V2V8! D C~V8! ~31!

is the Coulomb Hamiltonian associated with the chargeC.
Since the longitudinal variableQ i appears only quadratically
in Hi , the trace overQ i can be done directly giving the
Liouville action @15# arising from the conformal anomaly

E DQ ie2bHi5e2bHL, ~32!

where

bHL5
1

8pa2E dV2
1

24pE dV dV8K~V!

3S 2
1

D
d~V2V8! DK~V8!. ~33!

The Coulomb gas partition function can thus be written

Z5Trvy
NE DRe2bHk2bHL2bHC. ~34!

The Coulomb gas model can be converted, by following
standard procedures, into a sine-Gordon model. The first step
is to carry out a Hubbard-Stratonovich transformation on
bHC ,

e2bHC5ebHLE DFexpS 2
1

2
~bKA!21E dV]aF]aF D

3expS i E dVCF D , ~35!

where the Liouville factorebHL is needed to ensure that
e2bHC is one whenC50. Inserting this in Eq.~34!, we ob-
tain

Z5Trvy
NE DR DFe2bHk2bHFexpS i E dV~n2dK !F D ,

~36!

where

bHF5
1

2
~bKA!21E dV ]aF]aF. ~37!

The only dependence on disclinations is now in the term
linear inn. Thus, to carry out Trv , we need only to evaluate

Trvy
NexpS i E dV nF D5 (

N1 ,N2

1

N1!N2!
dN1 ,N2

yN11N2S E dV

a2
e2p iF~V!/6D N1S E dV

a2
e22p iF~V!/6D N2

5 (
N1 ,N2

1

N1!N2!
E dv

2p S yE dV

a2
ei $2p[F~V!/6]2v%D N1S yE dV

a2
e2 i $2p[F~V!/6]2v%D N2

5E dv

2p
expS ~2y/a2!E dVcos@2p~F/6!2v# D . ~38!

Thus

Z5E dv

2pE DFE DR e2bHke2bHFexpS ~2y/a2!

3E dVcos@2p~F/6!2v# DexpS 2 i E dVFdK D .
~39!

We can now change variables, settingF5(6/2p)(F81v).
The term linear in the Gaussian curvature then becomes

2 i E dVdK
6

2p
~v1F8!52 i

p

2pE dV F8dK, ~40!

where we used*dVdK50. The integral overv in Eq. ~39!
is now trivial, and dropping the prime we obtain

Z5E DFE DRe2bHke2L, ~41!

where

L5
1

2
~bKA!21S 6

2p D 2E dV]aF]aF2
2y

a2E dVcosF

2 i
6

2pE dV FdK ~42!

is the sine-Gordon action on a fluctuating surface of genus
zero. The first two terms of this action are the gradient and
cosine energies present on a rigid sphere. The final term
provides the principal coupling betweenF and fluctuations
in the metric. It is analogous to the dilaton coupling@16# of
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string theory, though here the coupling constant is imaginary
rather than real. Note that the Liouville action is not explic-
itly present in Eq.~41!.

In the regimebk@1, we can truncate the higher-order
terms inr. In the normal gauge, the partition function be-
comes

Z5E DrDFexpF2
1

2
bkE dV@~¹212!r#2

2
1

2
bGE dV~¹F!21

2y

a2E dVcosF

1 i
6

2pE dVF~¹212!rG , ~43!

where bG[36/4p2bKA and we useddK5(¹212)r. To
lowest order inr, the shape fluctuation fieldr is linearly
coupled to the scalar fieldF, which is the conjugate field to
the disclinations. In Ref.@1#, we have shown that similar
coupling in the fluctuating flat membrane is quadratic in the
shape fluctuation field.

Integrating over the shape fluctuation fieldr gives the
effective Hamiltonian for the conjugate field to the disclina-
tions

Z5E DFexpF2
1

2
bGE dV@~¹F!21m2F2#

1
2y

a2E dVcosF G , ~44!

with m25KA /k. This is the massive sine-Gordon theory.
The shape fluctuations induce the mass term forF field and
screen the Coulombic interaction between the disclinations
giving the Yukawa interaction between them. This partition
function is equivalent to that of the Yukawa gas Hamiltonian
on the rigid sphere with radiusR,

HYukawa5
1

2
bKAE dVn~V!

1

2¹21m2n~V!

5
1

2
bKA(

i , j
qiqjG~V i2V j !, ~45!

where

G~V i2V j !5(
l

2l11

l ~ l11!1m2Pl~cosv i j !5

2
p

cosF S n1
1

2DpG Pn~2cosv i j !, ~46!

where Pn( ) is the Legendre polynomial with degree
n521/26(A124m2)/2 andv i j is the angle between two
disclinations atV i andV j . For 0<m<1/2, the degree of the
Legendre polynomialn is real and the length scale intro-
duced byld[(m/R)21 is larger than the system size 2R
after recovering the original length scale by mapping the unit
sphere back to the sphere with the radiusR. On the other
hand, if m.1/2, n is a complex number,n521/26 i t,
wheret5(A4m221)/2 andld,2R. The length scale intro-
duced byld5R/m may be interpreted as the Debye screen-
ing length arising from shape fluctuations.

The interaction energy between two disclinationsi and j
at positionsV i andV j with strengthqi andqj is given by
qiqjG(di j ), wheredi j52Rsin(vij /2) is the chordal distance
between two disclinations on the sphere with radiusR. The
interactionG(di j ) has the limiting forms

G~di j !.H 2 1
2 ln~di j /2!, m21@2, di j!2R

2 1
2 ln~di j /2!, m21!2, di j!ld

e2di j /ld, m21!2, di j@ld .

~47!

Following the analogy of the two-dimensional Coulomb gas,
when the screening length is much larger than the system
sizeld@2R, the induced mass term arising from shape fluc-
tuations is irrelavent for the KT transition and the KT tran-
sition temperature is given byTc5pKA/72 for m!1/2.
However, form@1/2, the screening length is shorter than the
system sizeld!2R and the mass term is relavent for the KT
transition and changes the universality class of the system.
There is no KT transition at nonzero temperature. The dis-
clinations are always unbound at nonzero temperature and
the KT transition temperature vanishes. Thus we find the
crossover atm51/2.

In conclusion, we present the effect of shape fluctuations
on the interaction of the disclinations on a spherical surface
with genus zero. We have confirmed that the screened inter-
action is of the same form as the vortex line interactions in
type-II superconductors. In these superconductors, screening
of vortex line interactions drives the Kosterlitz-Thouless
transition temperature to zero for an infinite superconductor
in zero magnetic field@17#. Likewise, the screening of the
disclination interaction on the fluctuating spherical surface
drives the KT transition temperature to zero form21!2 in
which the screening length is shorter than the system size.
However, whenm21@2, the effect of shape fluctuations is
irrelavent and the effective KT transition occurs at a finite
temperature.
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